LAMINAR FLOW WITH INJECTION IN A
STRAIGHT DUCT

A, A, Repin UDC 532,517.2

The velocity distribution and pressure drop associated with injection flow in a straight duct
are analyzed on the basis of exact solutions of the Navier —Stokes equations.

The analytical investigation of flows with transverse injection is normally carried out on the assump-
tion that the flow near the wall has boundary-layer properties (see, e.g. [1,2]), corresponding to small
injection rates, For large injection rates, such that transverse pressure gradients are set up and the
transverse flow velocities v are comparable with the longitudinal flow velocities u, the flow pattern can no
longer be described in terms of a simple model. In particular, for values of the injection parameter above
the critical value, boundary-layer separation takes place, and near the wall, as clearly shown by, for
example, the results of visual observations [3], there emerges a flow region that can be analyzed only on
the basis of the complete system of Navier —Stokes equations.

1f, however, injection is realized into a duct (0 < x < =) of finite height (0 <y <h), at a certain dis-
tance x = x* from the channel entry the boundary layer displaced by injection at y = 0 joins with the boun-
dary layer at y =h, and the transverse velocity profile stabilizes. The principal attribute of this kind of
flow in the laminar regime is self-similarity; accordingly, for x = x; > x* the solution can be written

=ty (§) —(t — %) D), v="D (), p=py() + (£— %)) py + (x — %) p,. ()
Inserting (1) into the Navier —Stokes equations, we obtain a system of ordinary differential equations:
vb = — 2P o — @
Y
Vil = Pr_ o 11, ® — u, D, 3)
p
Po _ const 4 v — ——1—(1)2, (4)
Y 2 '

in which the dot denotes differentiation with respect to y. Here the longitudinal velocity uy(y) corresponds
to tge flow entering the channel up to a cross section x = xy > x* with a specified volumetric flow rate Q

= [ uydy =uh. The variation of the flow rate along the channel due to injection at x = x, is related to the
quantity ® and the total flow rate:

k .
Q= 5 [ (o) — (x— %)@ ()] dy = Qy— (x — X;) (0, — v, (5)
@

where v, and v; are the transverse velocities at the respective boundaries y = 0 andy =h,

The quantities p; and p, are constants. Here p; is determined in the solution of Eq. (3) for uyfy) sub-
ject to the boundary conditions uy(0) =ugh) =0 and a given flow rate Qg, and p, is determined in the solu-
tion of the third-order equation (2) under four boundary conditions:

DO) =1, D) =0, DO =D () =0. A )
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Equation (3} is completely autonomous and admits the solution uy = 0. In this case the system 2)-
(4) yields the velocity distribution for viscous flow in the case of injection into a duct closed at x = 0, i.e.,
Qg = 0 for x5 = 0. Inthe general case of uy # 0 the solution of Egs, {2) and (3) describes the pattern re-
sulting from the addition of longitudinal and transverse viscous fluid flows, thus affording a "viscous"
generalization of the superposition principle for flows of an ideal fluid,

We also note that the given flow generalizes in a certain sense flows of the boundary-layer type by
eliminating the influence of the transverse pressure gradient p, (through ¢ and #%) on the transverse dis-
tribution of the longitudinal velocities in plane-parallel flow,

In accordance with (1) the distribution of the temperature T (or concentration C) is also self-similar:
T =8, (5) + (x— %) D (1), ("
where 4,(y) and #y), according to the heat-transfer equation, satisfy the differential equations
b, = Db, + ugd, (8)
ad = OO — b9, (9)
in which  is the thermal diffusivity. "

The indicated self-similarity is not the exclusive property of planar motion. An analogous solution
exists for axisymmetrical motion as well:

u=uy(r) —(x—x)n(r), v=0), w=x0),

. . (10)

P =po(r) = (x —x0) py + (x — x,)* p, (ri<<r<<r,, 0<Cx< o),

where v, w, and u are, respectively, the radial, circumferential, and longitudinal components of the veloc-
ity,

v (;t- - _ﬂ_> — 2P g, (11
r, [y .
n=—— (), “2)
v (iio+—u1> =2 Lum + a9, (13)
. r p

. . : ; . )
m=v(¢+i——%)——w——-x—, (14)
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and the dot denotes differentiation with respect to r,

Equations (11)-(15) can be used to analyze the flow generated by injection into an annular duct. It is
to be noted that this self-similarity also holds for nonsteady flows, Omitting the exact corresponding sys-
tem of equations, we point out that time derivatives are added to the left-hand sides of Egs. (2)-{4) in the
planar case: -—(Bzé/ayat) in (2), —(uy/8t) in (3), and 83%/0t in (4). Analogously, for the axisymmetrical
case the lefi~hand sides of Egs. (11)-(15) are augmented with the derivatives — (87/8t), — (Ou,/0t), dp/0t,
—{0x/ot).

Besides their direct applicability to the given injection problem, the indicated equations are of inde~
- pendent interest insofar as they supplement the restricted class of self-similar problems associated with
the Navier —Stokes equations and take inertial terms into account. Their solution shows how viscous flow
goes over to inviscid flow with variation of the Reynolds number Re,

We give the results of the calculations for the steady planar flow equations (2)-(4).

1. The transverse velocity equation (2) is similar in its structure to the Falkner —Skan equations and
boundary-layer theory. However, because the boundary conditions differ, the similarity vanishes in the
solutions. In the general case Eq. (2) does not submit to elementary integration.

On the other hand, if the injection (suction) rate at y = 0 is equal to the suction (injection) rate at
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y =h, i.e., if v =v;, then v = const and p, = 0, This situation is characterized by the absence of a trans-
verse pressure gradient (p, = const). Inasmuch as this result does not depend on u,, it can be agsumed
that the transverse flow does not induce an additional pressure gradient in the longitudinal flow, Its in-
ception requires that vy = v,.

Let it be supposed that the duct wall y = h is impermeable, i.e., that v; =0, Clearly, the two-sided
injection problem (v =vyaty = 0 and v{ = —vyat y =h) is also reducible to the foregoing case, because on
the duct axis ®Mh/2) = ®/2) = 0, :

Equation (2) subject to the boundary conditions (6)
OO =ty DO)=QH) =D =0 (1.1)

has been solved numerically. For implementation of the numerical procedure it is written in the integral
form '

1 1 1
O =0y ~ f Ky (g, M) © (m)dn + 5 K, (y, 1) @*(m)dn + j Ky (y, m) ©* () dn,
0 1 0 1 |
2 (1.2)
p= ?T"= ay Re) + g y (1) D () dn -+ J" B ) D ) dn - [ &y ) 2 gy,
0 ) 0 2

which is obtained as follows. We denote by &* and $** certain average values of ¢ and & over the duct
height and write Eq. (2) in the form

vO — @*P + OO = H, (1.3)
where
He—2P (@ — 09D — (@ — ) b, (1.4)
P
The formal integral (1.3) has the form
y
O =D+ Goxp (14| +Cexp (1 L) + [ Ky —n B (G —man, 1.5)
\ : %
where
_ ®* Re " @* \* Re? O**h vk
Byp = v 5 :1/( P ) Y Re, Re= - (1.6)
K@g—n) = [exp(pl y—1 )—exp(pz y—n )] {1.7)
Py — My h h :

Transforming (1.5) with regard for the boundary conditions (1.1) governing Cy, C,, D, and 2p,/p, we
arrive at (1.2). Without writing out the cumbersomeé expressions for the kernels K;, K, K; in general
form, we point out that the convergence of the approximations according to (1.2) depends essentially on
the character of the kernels, i.e., in the final analysis on the choice of values for &* and ®**, In partic-
ular, for @* = ®** = 0 the approximation procedure according to Eq. (1.2) converges sufficiently rapidly
for small Re; for IRel < 1 (regardless of the sign of Re) one approximation is adequate.

For large values of Re it is required to have &* = 0 and ®** = 0 in order to ensure rapid conver-
gence. The zeroth approximation in this case is given by the expression

(I)o=vo {do%—ﬁ—z——!—dlexp(m—z-)—i—dzexp (“2 -yh—)}, (1.8)
in which

== 2p _ B, (eXppy —exp )
PU(Q) D,

» dy=—P—dexpp, —dyexpy,,

My

dy=— T [l —exppl, d; =

0 0

[1—exppl,

Dy = py — pty + (g — 1) €XP (g 5~ 1) - (Bably — Py - M) EXP By
— (Mabp - My — Mp) €XP Ly, (1.9)
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TABLE 1. Drag and Heat—Transfebr Coefficients for Laminar In-
jection Flow in a Straight Duct ‘

Re, Pe 50 40 30 20 10 5 1 0,5
]

a(Re 2;08 R0 2014 2,22 2.5 3,26 12,2 25 .
ﬁ((Re; 2,62 —2,85 —3,05 —3,3 —3.8 -—5.2 ~14,3 —26,3
y(Re} —2,62 —2,85 —3,05 —3,3 --3,8 ——5,1 14,1 —26,1
Nu(Pe) 7.1 6.3 5.5 4,5 3,19 2,2 1,24 1,07

Re, Pe —0,5 —1 —5 —10 —20 30 —40 —50
a(Re) —25 12,5 3,26 2,5 2,22 2,14 2,10 2,08
B(Re) 21,7 10,7 1,50 0,59 0,48 0,48 0,48 0,48
v(Re) 21,9 10,9 1,52 0,59 0,48 0,48 0,48 0,48
Nu(Pe) 0,93 0,76 0,191 0,015 0 0 0 0

Calculations show ‘that two or three approximations suffice

2 with practically 1% error for ®* =vy/2, &** = —vy/h, and all
0 0 values of Re. This is because the sign of each of the functions
a8 s & and @ is constant in the interval 0 <y <h and so the zeroth
\§ . approximation (1.8) itself, obtained by the replacement of ¢ and
0 & with constants, represents the flow faithfully in every detail.
Re ==, (50) For equations of the type (2) the adopted integral method
N\ ] has major advantages from the convergence standpoint over the
% [-o<,(~50) conventional difference method, because the latter requires
20 careful selection of the duct height step for each value of Re to
0 ensure stability (i.e., the same difficulty is met as in the solu-
5 tion of the complete system of Navier —Stokes equations.)
I The results of a calculation of the transverse velocities
9 9 G over the duct height on the basis of Eq. (1.2) are given in Fig. 1
Fig. 1, Transverse velocity dis- for a variation of Re from —« (suction) to +« (injection). It is
tribution ®/v, over the height of a gseen that the ® profile becomes progressively more humped with
duct with an impermeable wall y increasing Re, approaching in the limit {essentially at Re = 30)
=h (v; = 0). the profile for an ideal fluid. The latter is obtained by the direct

solution of Eq. (2) for v = 0 with the boundary conditions &(0)
=V, &) =2&h)=0:

2 .
D =y, cos (E—‘IL>, —————E—, (DzEE‘l-sin -E—ﬁ—), (1.10)
2 h 4 2 h

i.e., with injection, beginning with Re = 30, the transverse velocity distribution can be calculated from
the ideal~fluid model. The influence of viscosity, on the other hand, which is needed in order to calculate
the friction losses, only has to be taken into account in the immediate proximity of the wall y = h in a layer
of thickness 6. Additional investigation shows that the thickness of this layer is of order 6 = h{lnRe/Re).

For Re < 0 (suction at y = 0) the behavior of ¢/v, differs somewhat. The roundness of the profile is
observed to decrease monotonically with increasing IRel. For |IRei = 50 the profile practically coincides
with the asymptotic profile (IRei = <), Significantly, the latter differs from the ideal~fluid profile (1.10),
which does not depend on the sign of v;. This result confirms the well-known disparity between the vanish-

- ing-viscosity theory and the ideal-fluid theory [4].

The ®/v, distribution-in Fig. 1 corresponds to a longitudinal flow u = —éx, in whose motion the pres- ‘
sure drops along the duct in accordance with the expression (1.2) for p,:
2 L \2 .
Bor = p (L) = p ) = pil = L2 () R (1.12)

The results of a calculation of 3{(Re) are given in the second column of Table 1. For Re > 0 the
values of 3(Re) < 0, where 3 — —2.6 as Re — «; for values of Re close to zero 3 = —(12/Re + 81/35);
for Re < 0 the values of 3(Re) > 0, and 3 — 0.48 as iRel — =,
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2, Next we consider the longitudinal velocity distribution,
which, as implied by (1), consists of two components. Equations
(3) enable us to determine the component uy(y) corresponding to
the initial cross section x = x; and the flow rate Q, specified in
that cross section. The rate Qg is clearly equal to the sum of
the flow rate entering the duct through the entrant cross section
x = 0 and the flow rate (v{ — v()x, due to injection in the initial
section of the duct (0 < x < xg). Inasmuch as the cross section
X =Xy > x* is arbitrary (by the statement of the problem) and any
other cross section x > x; can be taken as the initial, we can ex-
press the longitudinal velocity distribution in any cross section
X > %y interms of uyy), i.e., ulx, y) = c(x)uy{y). We show that
this is indeed the case. In correspondence with (5) we have

h h

C(X)=§u(x, y)dy/ \uo(y)dy=1—
b

ST

N

|Rej=0

(r — %)y — vy

96
g /// 0 QO
04 / // and in correspandence with (1)
uy (y) —(x—x0)®(y) = Uiy (y) t] _(x“_‘_xﬂ_)__(vl_”o)J
92 Q
It follows from the latter relation that ’
0 @ s g5 g8 yh u, (y) = TQJ’T . (2.1)
Fig. 2. Longitudinal velocity dis- o .
tribution u, over the duct height for Substituting (2.1) into (3), we see at once that ¢ does satisfy
Vi = Vg, (2) for
2p, = —p, 20, (2.2)

Q

and so, in fact, u(x, y) = c®uyly).

Thus, to obtain the longitudinal velocity profile in any cross section it suffices to solve Eq. (3) for
the selected cross section x = x,.

For v = const (vy = vy) and the boundary conditions uy(0) = uyth) = 0 Eq. (3) has the solution

4
exp(Re-——)—l
_ ph h Y v 2.3
° " py, [ expRe — 1 h]’.Re_ v (2.3)

The constant p; is expressed in terms of the given flow rate Q, = uh:

p uy 1 1, 1 - '
o= h 2R, “<R">=[?—m*eTpRT_T} ’ @4

and the values of o (Re) are given in the first column of Table 1. The pressure drop along the duct is
Apy =pl= —pﬁvo%a(Re)- (2.5)

The flow regime without a transverse component (Poiseuille flow) corresponds to Re = 0, o —~ 12/Re, and
by passage to the limit we obtain the well-known result Ap = —12vpu(L/h); as IRe_. — « (essentially Rel
= 50) .«a] =2, i.e., for |IRel > 1 the drag increases appreciably: ’
Apy=—2p Jvoiﬂ—,LL—. (2.6)
The considerable increase in Ap is attributable to a change in the structure of the velocity profile, which
is drawn closer to the wally =h (to y = 0 for Re < 0) (Fig. 2), causing the velocity gradient u, to increase
significantly there; for {Rel > 1 the velocity increases linearly along the height of the duct, dropping to
zero only in the immediate vicinity-of y =h. Equation (3) has been solved numerically for vy = 0, as in the
case of (2) by the integral method. In principle, since u,is expressed in terms of @ according to (2.1),
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we can use the results of the numerical integration for @ in §1,

) However, to avoid the inevitable errors of numerical differentia~
<N - tion, we form an integral equation for the determination of ug.
\(Re=-50,°° Accordingly, we write (3) in the form
24 ; ity — U ®* - uD** =p +G. 2.7
>§\(‘2”| 4 The formal integration of (2.7) with regard for the boundary
20 - conditions uy(0) = uyh) = 0 yields the integral equation
/ 5 i h 1
. o=t e [ K mun, v 22—, R0) 1 [ Lk
u o “ ey
v L - TRV o
(2 7 N in which ug, satisfies Eq. {2.7) for G = 0 and has the form
N \ \ (1 —exppy)exp | py—- | + (exppy — 1) exp p,—
AT’ \ gg = Y, (Re) i LRA.
<<\ i\ \\\\\ . eXp jy — €Xp fiy ’
) 20 N T T 2.9
N . _ .
a4 \_5/0 Q 7o (Re) = [ (I—expp) (expp; —1) pp—1py . 1] " 2.10)
EXP I — X Uy Pably b
0 o2 o4 g6 08 y/b where py and p,y are evaluated according to Eq. (1.6).
Fig. 3. Longitudinal velocity dis- The calculations for $* = vy/2 and $** = —vy/h exhibit a
tribution u, over the height of a weak influence of the & profile on the distribution of uy; the dif-
duct with an impermeable wall y ference in'the values obtained for the & profiles (1.2), (1.8), and
=h (v = 0), (1.10) does not exceed 5%. Also weak is the influence on the

quantity
- L
Apy= pL = pou -7 (Re), (2.11)

where p; is evaluated in terms of y (Re) according to {2.8).

The velocity profiles u, given in Fig. 3 indicate that the asymptotic representations for |Re| = « can
be used for |Rel = 50; as in the case of ®, there is a disparity between the asymptotic representations for
Re =+« and Re = —«, The values of y (Re) are given in Table 1. We note that the values of v and 8 prac-
tically coincide, as expected in light of the above-indicated exact relation (2.2). This result clearly shows
the acceptable accuracy of computational procedures based on the integral relations (1.2) and (2.8). The
asymptotic values of ¥ and 8 are: v (Re > 50) = S(Re > 50) = —2.62; y{Re < —50) = 3(Re < —50) = 0.48;
for small [Rei < 0.5 we have y = 3 = —12(1/Re + 3/35).

According to (1), taking Egs. (1.11) and (2.11), as well as the equality of ¥ and 3, into account, we
write the total pressure drop in the form

2 L 2 - L

3. We now apply the results obtained above to the following heat problem: We consider two parallel
surfaces y = 0 and y =h, the first at a temperature T and the second at a temperature Ty. To character-
ize the heat-transfer rate between the surfaces we introduce the number Nu = ah/A = [1/(Ty, — T NT/
ay)l y=h» Wwhere the heat-transfer coefficient o is referred to the temperature difference Ty — Ty. It is
obvious that in this stabilized thermal regime without injection the mutual influence between the walls is

- through heat conduction, and Nu = 1. Suppose now that injection (suction) is realized at y = 0 with a tem-
perature T,. Expressions (6) and (7) imply that ¢ = 0 due to the invariance of T, and Ty along x.

The solution of Eq. (8) for ¢, with u, = 0 yields the expression

1 y

By = Ty (T, —T) [ exp [Pe | qy| dy| | exp (Pe | gdy) dy|™, Pe = PrRe, (3.1)
0 0 0 Q
which corresponds to
1

1
Nu = exp (Pe u\ (pdy) { exp (Pe \y cpdy) dy}_l. (3.2)
0 4 o



The dependence Nu(Pe) for ¢ determined by the solution of Eq. (1.2) with vy =0 and vy # 0 is given in the
fourth column of Table 1, It is seen that the injection rate has a strong influence on the heat transfer;
Nu.~ vV Pe for Pe » 1, Inthe suction case (Pe < 0) the influence of the surface y = 0 on the surfacey =h
diminishes, vanishing altogether for Pe = —20, ‘

If in this case the surface y = h is permeable (v; = vy, ¢ = const), we obtain a simple expression from

(3.2):

Nut — Peexp Pe '
expPe—1

(3.3)

Qualitatively the same results are obtained, but quantitatively they are more accentuated; Nu ~ Pe
for Pe »> 1, and in suction (Pe < 0) the influence of the surface y = 0 on the surface y = h essentially van-
ishes for Pe = —5,

NOTATION
X, ¥ are the length and height coordinates in the duct, respectively;
h is the duct height;
L is the duct length;
ug us v, & are the longitudinal and transverse velocity components;
u is the average longitudinal velocity;
vy is the injection (suction) rate at y = 03
vy is the injection (suction) rate at y = h;
v, T are the temperature;
p is the pressure;
Re = vgh/7v;
P is the density;
v is the kinematic viscosity;
Nu is the Nusselt number;
a, 3, Y are the coefficients in the pressure-drop equations;
Pe = PrRe;
Uy, o are the eigenvalues for Egs. (1.3) and (2.7).
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